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Abstract
According to Etingof and Varchenko, the classical dynamical Yang–Baxter
equation is a guarantee for the consistency of the Poisson bracket on certain
Poisson–Lie groupoids. Here it is noticed that Dirac reductions of these Poisson
manifolds give rise to a mapping from dynamical r-matrices on a pair L ⊂ A
to those on another pair K ⊂ A, where K ⊂ L ⊂ A is a chain of Lie
algebras for which L admits a reductive decomposition as L = K+M. Several
known dynamical r-matrices appear naturally in this setting, and its application
provides new r-matrices, too. In particular, we exhibit a family of r-matrices for
which the dynamical variable lies in the grade zero subalgebra of an extended
affine Lie algebra obtained from a twisted loop algebra based on an arbitrary
finite-dimensional self-dual Lie algebra.

PACS numbers: 02.20.-a, 02.10.Yn

1. Introduction

The Yang–Baxter equation and the associated algebraic structures play a central role in
the theory of integrable systems. Recently there has been growing interest in dynamical
generalizations of these objects (for a review, see [1]). Our concern in this paper is the
classical dynamical Yang–Baxter equation (CDYBE) that originally appeared in studies of the
Liouville–Toda and the WZNW conformal field theories [2–4]. In its general form the CDYBE
is defined [5] as follows. Let A be a Lie algebra and L ⊂ A a Lie subalgebra with dual space
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L∗. A dynamical r-matrix with respect to the pair L ⊂ A is a map r from an open domain
Ľ∗ ⊂ L∗ to A ⊗ A subject to

[r12, r13] + L1
a

∂r23

∂λa
+ cycl. perm. = 0. (1.1)

Here the λa are coordinates on L∗ with respect to a basis {La} of L; the usual tensorial notation
and the summation convention are used throughout the paper. The cyclic permutations act on
the three tensorial factors; for any r = Xi ⊗ Yi ∈ A ⊗ A one defines r12 = Xi ⊗ Yi ⊗ 1,
r31 = Yi ⊗1⊗Xi and so on. It is further required that the symmetric part of r is an A-invariant
constant element of A⊗A and the function r : Ľ∗ → A⊗A is equivariant with respect to the
natural infinitesimal actions of L on the respective spaces. Etingof and Varchenko [5] found an
interesting geometric interpretation of the CDYBE that generalizes Drinfeld’s interpretation of
the CYBE in terms of Poisson–Lie groups [6], namely, they constructed a so-called dynamical
Poisson–Lie groupoid structure on the direct product manifold

Ľ∗ × A × Ľ∗ (1.2)

whereA is a connected Lie group with Lie algebra A. The Poisson structure on (1.2) is encoded
by r in such a way that the antisymmetry and the Jacobi identity enforce the above-mentioned
invariance and equivariance properties of r together with the condition that the function

CDYB(r) := [r12, r13] + L1
a

∂r23

∂λa
+ cycl. perm. (1.3)

must yield an A-invariant constant element of A∧A∧A. Many examples and a classification
of the meromorphic classical dynamical r-matrices for certain choices of the pair L ⊂ A are
now available [1, 5].

The purpose of this paper is to point out a simple mechanism whereby some known and
some new solutions of the CDYBE can be viewed from a unified perspective. Our basic idea
is that the imposition of suitable constraints on the dynamical Poisson–Lie groupoid (1.2) will
result in a reduced Poisson–Lie groupoid of the form

Ǩ∗ × A × Ǩ∗ (1.4)

for some subalgebras K ⊂ L. The Dirac bracket defined by the reduction will be encoded
by an r-matrix r∗ : Ǩ∗ → A ⊗ A that solves the CDYBE for the pair K ⊂ A whenever the
original r-matrix solves it for the pair L ⊂ A. It will be shown that the reduction works in
this manner if K ⊂ L admits a K invariant complementary linear space and the constraints
of the reduction are second class. Under these conditions, we obtain a simple formula for
r∗ by applying the standard formula to determine the Dirac bracket on Ǩ∗ × A × Ǩ∗. This
formula implies that CDYB(r) = CDYB(r∗), and therefore the reduction closes on classical
dynamical r-matrices.

Our remark on the Dirac reduction of dynamical r-matrices complements the known
constructions of solutions of the CDYBE and sheds a new light on the origin of some solutions.
For instance, if the pair L ⊂ A is given by the Cartan subalgebra of a simple Lie algebra, which
is a case of principal interest, then the corresponding basic rational and trigonometric solutions
can be viewed as Dirac reductions of respectively the zero and the so-called ‘canonical’ (or
Alekseev–Meinrenken) r-matrices [5,7,8] for which L = A. We note that an equivalent result
can be extracted from [5] as well (see theorem 3.14 in [5]). However, Dirac reduction is not
mentioned in [5], and it works in circumstances more general than those considered in this
reference. In particular, in equation (4.7) a class of r-matrices is displayed which is applicable
to arbitrary (not necessarily simple or reductive) finite-dimensional self-dual Lie algebras [9].
To illustrate that formula (4.7) contains new dynamical r-matrices, too, we shall apply it to the
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self-dual extension [10] of the Euclidean Lie algebra e(d) for even d. Moreover, we shall show
that this formula remains well defined in certain infinite-dimensional situations as well. In fact,
several new r-matrices will be obtained by applying (4.7) in the cases for which the dynamical
variable lies in the grade zero subalgebra of an extended affine Lie algebra associated with
a twisted loop algebra based on an arbitrary finite-dimensional self-dual Lie algebra. These
yield generalizations of Felder’s spectral-parameter-dependent dynamical r-matrices [4] upon
applying evaluation homomorphisms to the twisted loop algebras.

The organization of the paper is the following. A short recall of the geometric interpretation
of the CDYBE from [5] is presented in section 2. Section 3 is devoted to the Dirac reduction of
dynamical r-matrices. In section 4 examples are given on arbitrary finite-dimensional self-dual
Lie algebras, and some of these r-matrices are generalized to affine Lie algebras in section 5.
The final section contains a discussion of the results, open questions and comments on the
literature.

The main results are given by proposition 1 in section 3, equation (4.7) in section 4 and
proposition 2 in section 5. We consider the development of the Dirac reduction viewpoint
to be our most important result, since it may lead to further results in the future. For
example, it should be possible to apply Hamiltonian reduction after quantizing the Poisson–
Lie groupoids that underlie the dynamical r-matrices, since the second-class constraints that
appear in the examples usually admit a natural separation into first-class constraints and gauge
fixing conditions.

2. Geometric interpretation of the CDYBE

We wish to apply Dirac reduction to the dynamical Poisson–Lie groupoids that encode the
dynamical r-matrices. As a preparation, we here recall from [5] the definition of these Poisson
manifolds in a form convenient for our purpose.

Let us denote the elements of the space in (1.2) as

Ľ∗ × A × Ľ∗ = {(λF, g, λI )} (2.1)

and let λa := λ(La) be the components of λ ∈ Ľ∗ with respect to a basis La of L for which

[La,Lb] = f c
ab Lc. (2.2)

Consider a function r : Ľ∗ → A ⊗ A, and equip Ľ∗ × A × Ľ∗ with a Poisson bracket { , } of
the following form:

{g1, g2} = g1g2r(λ
I ) − r(λF )g1g2

{g, λIa} = gLa

{g, λFa } = Lag

{λIa, λIb} = −f c
ab λIc

{λFa , λFb } = f c
ab λFc

{λIa, λFb } = 0.

(2.3)

In this formula g1 := g⊗1 and g2 := 1⊗g are really defined in terms of matrix representations
of the group A. If one fixes a representation, then the first line of (2.3) serves to define the
value of {g1, g2}ij,kl = {gij , gkl}, while the second line means that {gij , λIa} = (gLa)ij . The
antisymmetry and the Jacobi identity of the Poisson bracket lead to the requirements on r

mentioned in the introduction as follows [5]. First, the antisymmetry {g1, g2} = −{g2, g1}
requires

rs := 1
2 (r + r21) (2.4)
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to be an A-invariant constant element of A ⊗ A. Second, the Jacobi identities

{{g1, g2}, λIa} + cycl. perm. = 0 = {{g1, g2}, λFa } + cycl. perm. (2.5)

are equivalent to the condition

[L1
a + L2

a, r(λ)] = f c
ba λc

∂r(λ)

∂λb
(2.6)

which is the coordinatewise description of the L-equivariance of the map r . This equation
further restricts only the antisymmetric part ra of r = (rs + ra). Third, an easy calculation
gives

{{g1, g2}, g3} + cycl. perm. = (
CDYB(r)(λF )

)
G − G

(
CDYB(r)(λI )

)
(2.7)

with G := g ⊗ g ⊗ g. This means that CDYB(r) must be an A-invariant constant element of
A ⊗ A ⊗ A.

We saw that (2.3) is indeed a Poisson bracket if and only if rs and CDYB(r) areA-invariant
constants and (2.6) holds. If rs is an A-invariant constant, then

CDYB(ra + rs) = CDYB(ra) + CDYB(rs) = CDYB(ra) + [rs12, r
s
13]. (2.8)

One sees from this that CDYB(r) belongs to A ∧ A ∧ A ⊂ A ⊗ A ⊗ A. Clearly, rs drops out
from the Poisson bracket (2.3). Its sole role is that in many cases one can achieve CDYB(r) = 0
by adding a suitable rs to an ra for which CDYB(ra) is a nonzero constant.

Below we use only the above-mentioned features of the Poisson manifold (2.1). The form
of the Poisson bracket (2.3) guarantees that (2.1) is a Poisson–Lie groupoid in the sense of
Weinstein [11]. This is readily verified from the definitions, but is not directly relevant for the
purposes of this paper (see [5]). Note that the Poisson bracket (2.3) is also valid in the trivial
case for which r = 0, and we shall see that the Dirac reduction of this case leads to dynamical
r-matrices for which CDYB(ra) = 0.

3. Dirac reduction acting on dynamical r-matrices

We wish to reduce the phase space (2.1), (2.3) to an object of a similar kind (1.4) with respect
to a subalgebra K ⊂ L. For the reduction to work, we need two assumptions. The first
assumption is that K admits an invariant complementary linear space M in L, that is we have

L = K + M [K,M] ⊂ M. (3.1)

In this case we can choose an adapted basis of L as

{La} = {Ki} ∪ {Mα} Ki ∈ K Mα ∈ M. (3.2)

Correspondingly, the structure constants of L become

[Ki,Kj ] = f
k

ij Kk [Ki,Mα] = f
β

iα Mβ [Mα,Mβ] = f
γ

αβ Mγ + f
i

αβ Ki. (3.3)

We also have the induced decomposition

L∗ = K∗ + M∗ K∗ := M⊥ M∗ := K⊥. (3.4)

Accordingly, we decompose any λ ∈ L∗ as

λ = κ + µ with κ ∈ K∗ µ ∈ M∗ (3.5)

and these constituents have the components

κi = κ(Ki) = λ(Ki) = λi and µα = µ(Mα) = λ(Mα) = λα. (3.6)
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We define the reduction by putting the M∗-components of λI and λF to zero; i.e., we
impose the constraints

λIα = 0 and λFα = 0. (3.7)

We want these constraints to be second class in the Dirac sense [12]. Clearly, this means that
the function

Cαβ(κ) := −f
i

αβ κi (3.8)

must define an invertible matrix. Our second assumption is that this condition holds after a
possible restriction of the domain Ľ∗. More precisely, we assume that

Ǩ∗ := {κ ∈ Ľ∗ ∩ K∗ | C(κ) : invertible } �= ∅ (3.9)

i.e. that Ǩ∗ is a nonempty open submanifold of K∗. The inverse of the matrix Cαβ(κ) will be
denoted by Dαβ(κ),

Cαβ(κ)Dβγ (κ) = δγα . (3.10)

Under these assumptions, the constrained manifold

Ǩ∗ × A × Ǩ∗ := {(κF, g, κI )} (3.11)

is equipped with an induced Poisson bracket {, }∗ given by the application of Dirac’s well
known formula. For functions F1 and F2 on Ǩ∗ × A × Ǩ∗, we have

{F1, F2}∗ = {F̃1, F̃2} − {F̃1, λ
I
α}Dαβ(κI ){λIβ, F̃2} + {F̃1, λ

F
α }Dαβ(κF ){λFβ , F̃2} (3.12)

where the F̃i are arbitrary extensions of the Fi to a neighbourhood of the constrained manifold
in Ľ∗ × A × Ľ∗ and the function on the right-hand side is restricted to Ǩ∗ × A × Ǩ∗ after the
evaluation of the Poisson brackets. Convenient extensions are provided by requiring the F̃i to
be independent of µI and µF defined by (3.5). Proceeding in this manner, we easily find the
following Dirac brackets:

{g1, g2}∗ = g1g2r
∗(κI ) − r∗(κF )g1g2

{g, κI
i }∗ = gKi

{g, κF
i }∗ = Kig

{κI
i , κ

I
j }∗ = −f

k

ij κI
k

{κF
i , κ

F
j }∗ = f

k

ij κF
k

{κI
i , κ

F
j }∗ = 0

(3.13)

where

r∗(κ) := r(κ) + Dαβ(κ)Mα ⊗ Mβ ∀κ ∈ Ǩ∗. (3.14)

Notice that the Dirac brackets that involve the components of κI or κF are ‘the same’ as
the corresponding original Poisson brackets. This is guaranteed by (3.12) upon using (3.1),
which explains why this assumption was made. For later reference, denote the restriction of
r : Ľ∗ → A ⊗ A to Ǩ∗ by r̃ and introduce the map D : Ǩ∗ → A ⊗ A in correspondence with
the second term in (3.14). In this notation,

r∗ = r̃ + D. (3.15)

It is obvious that the symmetric part of r∗ is equal to the symmetric part of r , which is an
A-invariant constant. The K-equivariance of the map r∗ : Ǩ∗ → A ⊗ A is guaranteed since
the Dirac bracket satisfies the Jacobi identity, and one can also directly check this equivariance
property:

[K1
i + K2

i , r
∗(κ)] = f

k

ji κk
∂r∗(κ)
∂κj

. (3.16)
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For the same reason, it follows that

CDYB(r∗) := [r∗
12, r

∗
13] + K1

i

∂r∗
23

∂κi
+ cycl. perm. (3.17)

defines an A-invariant constant element of A⊗A⊗A. One may expect this constant to be the
same as the constant given by CDYB(r), which is determined by the formula (1.3). Indeed,
we can verify the following statement.

Proposition 1. Consider an L-equivariant map r : Ľ∗ → A ⊗ A and suppose that
equations (3.1) and (3.9) hold. Then one has the equalities

CDYB(D) = 0 CDYB(r∗) = CDYB(r) (3.18)

where r∗ : Ǩ∗ → A ⊗ A and D : Ǩ∗ → M ⊗ M are given by (3.14) with (3.10).

This statement and its interpretation in terms of Dirac reduction represent the first main
result of the present paper. The first equality means that under the assumptions in (3.1) and (3.9)
the map D : Ǩ∗ → A ⊗ A is an antisymmetric solution of the CDYBE for the pair K ⊂ A.
More precisely, since D(Ǩ∗) ⊂ L ⊗ L, this is a solution of the CDYBE for the pair K ⊂ L.
The second equality implies that if r is a classical dynamical r-matrix for the pair L ⊂ A then
so is r∗ for the pair K ⊂ A. In the special case for which K is a Cartan subalgebra and L is a
reductive subalgebra of a simple Lie algebra, the statement of the proposition has been proved
in [5]. In fact, the proof that we present is analogous to the proof of theorem 3.14 in [5], but
we use only the assumptions in (3.1) and (3.9) without any other special features of the Lie
algebras K ⊂ L ⊂ A.

In order to verify that CDYB(D) = 0, first note that

K1
i

∂D23(κ)

∂κi
= −f

i

γ θ Dγα(κ)Dθβ(κ)Ki ⊗ Mα ⊗ Mβ (3.19)

which follows by computing the derivatives on account of (3.10) and (3.8). By using this, we
find that

CDYB(D) = QναβMν ⊗ Mα ⊗ Mβ (3.20)

with

Qναβ = f
ν

γ θ DγαDθβ + f
β

γ θ Dγ νDθα + f
α

γ θ DγβDθν . (3.21)

Multiplying by invertible matrices, we then obtain

QναβCαξCβη = f
ν

ξη − Dγ ν(f a
ηγ f

i
aξ + f

a

γ ξ f i
aη )κi = f

ν

ξη + Dγ νf
a

ξη f i
aγ κi = 0. (3.22)

For the first equality, we used that f a
ηγ f

i
aξ = f

α
ηγ f

i
αξ , where the indices a and α run

over the bases of L and M, respectively, and the equality holds because of (3.1). The second
equality is valid on account of the Jacobi identity for L, while the third equality is implied
by the definitions of C and D. Since we have shown that Qναβ = 0, CDYB(D) = 0 follows
by (3.20).

We start the proof of the second equality in (3.18) by remarking that

[M2
α + M3

α, r23(κ)] = Cαβ(κ)
∂r23

∂λβ
(κ). (3.23)

This follows from (2.6) upon imposing the constraint κ = µ ∈ Ǩ∗. This equality then implies
that

M1
α

∂r23

∂λα
(κ) = [D12(κ) + D23(κ), r23(κ)]. (3.24)
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By using this and CDYB(D) = 0, it is easy to obtain from (3.15) that

[r12, r13](κ) + L1
a

∂r23

∂λa
(κ) + cycl. perm. = [r∗

12(κ), r
∗
23(κ)] + K1

i

∂r∗
23

∂κi
(κ) + cycl. perm.

(3.25)

whereby the proof is complete.
For any constant, nonzero, A-invariant element ϕ ∈ A ∧ A ∧ A, a modified version of

the CDYBE may be defined by replacing the zero on the right-hand side of (1.1) with ϕ. It is
clear from proposition 1 that the Dirac reduction maps not only the solutions of the CDYBE
but also the solutions of this modified CDYBE with respect to L ⊂ A to those with respect to
K ⊂ A, for any fixed invariant ϕ.

4. Examples on self-dual Lie algebras

The examples that we describe next are obtained in the situation for which the Lie algebra A
admits a nondegenerate, invariant symmetric bilinear form2 〈 , 〉 that remains nondegenerate
upon restriction to the subalgebras K and L in the chain K ⊂ L ⊂ A. The bilinear form
induces the identifications A∗ = A, L∗ = L and K∗ = K and allows one to associate with
any element of A ⊗ A a linear operator on A; the operator associated with X ⊗ Y sends Z to
〈Y,Z〉X for any X, Y,Z ∈ A. The assumption in (3.1) is now guaranteed if we let

M := K⊥
L := {λ ∈ L | 〈λ, κ〉 = 0 ∀κ ∈ K}. (4.1)

Let us now suppose that the invertibility assumption (3.9) holds and denote the End(A)-valued
functions associated with r and r∗ by ρ and ρ∗, respectively. Then formula (3.15) can be
rewritten in the form

ρ∗(κ)(X) =
{
ρ(κ)(X) if X ∈ (K + L⊥)
ρ(κ)(X) +

(
(ad κ)|K⊥

L

)−1
(X) if X ∈ K⊥

L .
(4.2)

The domain Ǩ consists of those elements κ ∈ Ľ ∩ K for which the restriction of the operator
ad κ to K⊥

L is invertible. To obtain concrete examples, we have to start with a dynamical
r-matrix ρ : Ľ → End(A) and have to ensure that Ǩ is nonempty.

If we start with the trivial (zero) r-matrix, then (4.2) with ρ = 0 provides an antisymmetric
solution of the CDYBE whenever Ǩ ⊂ K is nonempty. Although this remark appears quite
trivial, many antisymmetric solutions of the CDYBE can be understood as its special cases.
For example, theorem 3.2 of [5] implies that if one takes K to be a Cartan subalgebra of a
simple Lie algebra A and lets L vary, then one can recover from (4.2) essentially (i.e. up to
some obvious gauge transformations) all antisymmetric solutions of the CDYBE for the pair
K ⊂ A.

Somewhat more interestingly, we may also take as our starting point a ‘canonical’
dynamical r-matrix that is available in the case L = A for any self-dual Lie algebra A.
This r-matrix is defined by using the holomorphic complex function

f (z) := 1

2
coth

z

2
− 1

z
. (4.3)

It was found in [5,7,8] (see also [13,14]) that the r-matrix associated with the linear operator

ρ±(λ) = f (ad λ) ± 1
2I λ ∈ Ǎ (4.4)

2 Such Lie algebras, which include, for example, the reductive Lie algebras and the Drinfeld doubles of the Lie
bialgebras, are called self-dual in this paper. For their structure, one may consult [9].
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solves the CDYBE (1.1) for L = A. In the standard manner (see e.g. [15], chapter 7), the
holomorphic function f can be applied to the operator ad λ with the aid of the formula

f (ad λ) := 1

2π i

∮
-

dz f (z)(zI − ad λ)−1 (4.5)

where - is a contour that encircles each eigenvalue of ad λ. This expression is well defined
and is independent of the contour - if f is holomorphic in a neighbourhood of the spectrum
σλ of ad λ. Thus the domain Ǎ in this case is naturally specified as

Ǎ = {λ ∈ A | 2π in /∈ σλ ∀n ∈ Z
∗ } (Z∗ = Z \ {0}). (4.6)

The definition of f (ad λ) in (4.5) is equivalent to the alternative definition by means of the
Taylor series expansion of f (z) around z = 0, which is applicable if σλ lies inside the disc on
which that series converges [15].

In terms of the corresponding linear operators ρ∗
±, the reduction of the r-matrix (4.4) to

a self-dual subalgebra K ⊂ A (on which 〈 , 〉 remains nondegenerate) can now be written as
follows:

ρ∗
±(κ) =

{
f (ad κ) ± 1

2I on K
1
2 coth

(
1
2 ad κ

) ± 1
2I on K⊥

A.
(4.7)

In this equation 1
2 coth( 1

2 ad κ) = f (ad κ)+(ad κ)−1 on K⊥
A withf in (4.3). Hence the operators

ρ∗
±(κ) are well defined on A if and only if the spectrum of ad κ , acting on A, does not intersect

2π iZ∗, and (ad κ)|K⊥
A

is invertible. These are the conditions that the domain Ǩ ⊂ K must
satisfy. The invertibility requirement on (ad κ)|K⊥

A
means that one must restrict the original

domain Ǎ for the reduction to be performable. Since Ǩ does not contain the zero element, its
nonemptyness is a nontrivial condition on the subalgebra K ⊂ A. To state the result in the
alternative tensorial terms, if the above conditions are satisfied, then solutions of the CDYBE
for K ⊂ A are provided by the functions r∗

± : Ǩ → A ⊗ A given by

r∗
±(κ) = ±1

2
Î + 〈Ki, f (ad κ)Kj 〉Ki ⊗ Kj +

〈
Mα,

1

2
coth

(
ad κ

2

)
Mβ

〉
Mα ⊗ Mβ. (4.8)

Here Ki,K
j and Mα,M

β denote dual bases of K and K⊥
A, respectively, 〈Ki,K

j 〉 = δ
j

i and
〈Mα,M

β〉 = δβα and Î := Ki ⊗ Ki + Mα ⊗ Mα .
As we shall see below, many known solutions of the CDYBE can be recovered as special

cases of (4.7), (4.8). The class of r-matrices given by these equations apparently has not
been displayed before in this general form; its full set of special cases is still to be uncovered.
It can be checked independently of the Dirac reduction argument, too, that (4.7) provides a
solution of the CDYBE whenever one has a decomposition A = K + K⊥

A such that the above
formula yields a well defined linear operator on A. This is important in view of interesting
new examples for which A is infinite dimensional with a finite-dimensional K (see section 5).

Several solutions of the CDYBE can be obtained from (4.8) by taking K := A0 with respect
to an integral gradation A = ⊕n∈ZAn of A for which K⊥

A = ⊕n∈Z∗An. One must choose A and
the gradation in such a way that a nonempty domain Ǩ ⊂ K exists on which the components
of r∗

± are smooth functions. Notice that this is automatically guaranteed if A is a complex
simple Lie algebra. Indeed, in this case the regular semisimple elements form a dense open
submanifold in A0 for any integral gradation, and thus ad κ is invertible on K⊥

A = ⊕n∈Z∗An

if κ belongs to a small ball in K around such a regular element. An alternative description
of precisely these examples is provided by theorem 3.14 in [5]. We note in passing that in
this case the second-class constraints of the Dirac reduction can be naturally separated into
first-class constraints and gauge fixing conditions, simply by decomposing K⊥

A into positively
and negatively graded subspaces.



On dynamical r-matrices obtained from Dirac reduction and their generalizations to affine Lie algebras 7243

To recover the basic trigonometric dynamical r-matrix from the above-mentioned
examples, let us now take A to be a finite-dimensional complex simple Lie algebra equipped
with the principal gradation and identify K with the Cartan subalgebra given by the grade zero
elements. Then the Mα in (4.8) can be taken to be the root vectors associated with the set of
roots 1 with respect to K ⊂ A, and (4.8) yields

r∗
±(κ) = ±1

2
Î +

∑
α∈1

|α|2
4

coth

(
α(κ)

2

)
Mα ⊗ M−α. (4.9)

We here used that [κ,Mα] = α(κ)Mα , 〈Mα,M−α〉 = 2
|α|2 and that f (ad κ)Kj in (4.8) now

vanishes since K is Abelian. This solution of the CDYBE (1.1) first appeared in studies of the
WZNW and conformal Toda field theories [3]. It has been proved in [5] that if the dynamical
variable belongs to a Cartan subalgebra of a simple Lie algebra then all solutions of (1.1) can be
obtained from (4.9) by shifts of the argument κ by a constant and simple limiting procedures.
Note in passing that the analogous reduction with r = 0 as starting point leads to the rational
r-matrix [5] r∗

0 (κ) = ∑
α∈1

|α|2
2α(κ)Mα ⊗ M−α .

It was found in [5] that the natural generalization of (4.9) defines a dynamical r-matrix also
for an affine Kac–Moody Lie algebra A. To obtain this generalization, one uses the principal
gradation of A for which K := A0 is the Cartan subalgebra, and correspondingly extends the
summation in (4.9) over the roots of A. Motivated by this result, in section 5 we display a large
family of dynamical r-matrices on affine Lie algebras based on arbitrary finite-dimensional
self-dual Lie algebras.

Before turning to infinite-dimensional Lie algebras, we wish to show that our general
formula (4.7) contains new examples for finite-dimensional self-dual Lie algebras, too. To
illustrate this, we now take A to be the well known [10] self-dual extension of the complex
Euclidean Lie algebra e(d). We denote the generators of e(d) (d � 2) by Pi and Jij , where
i, j = 1, . . . , n and the relation Jji = −Jij is understood. The Jij span the orthogonal Lie
algebra o(d) ⊂ e(d), and we let Tij (Tji = −Tij ) denote the generators of the dual space of
o(d). By definition, A = span{Pi, Jij , Tij } has the commutation relations

[Jij , Jkl] = δjkJil + δilJjk − δjlJik − δikJjl

[Jij , Tkl] = δjkTil + δilTjk − δjlTik − δikTjl

[Tij , Tkl] = [Tij , Pk] = 0

[Jij , Pk] = δjkPi − δikPj

[Pk, Pl] = Tkl.

(4.10)

There is a one-parameter family of invariant scalar products on A, which in terms of our
redundant set of generators is given by

〈Jij , Jkl〉 = p(δjkδil − δikδjl)

〈Jij , Tkl〉 = δjkδil − δikδjl

〈Jij , Pk〉 = 〈Tij , Pk〉 = 0

〈Pi, Pj 〉 = δij

(4.11)

where p is an arbitrary constant. It is clear that K := span{Jij , Tij } is a self-dual subalgebra
and K⊥

A = span{Pi}. By writing κ ∈ K as κ = xijJij +yijTij and P ∈ K⊥
A as P = ziPi , where

summation is understood and the components xij , yij are antisymmetric in ij , we see that
[κ, P ] = 2

∑
i,k x

ikzkPi . Since the determinant of an antisymmetric matrix of odd size is zero,

ad κ is never invertible on K⊥
A if d is odd, and hence we do not obtain a nonempty domain Ǩ in

this case. However, if d is even, then one may check that for κ0 := J12 + J34 + · · · + Jd−1,d the



7244 L Fehér et al

operator (ad κ0)|K⊥
A

is invertible. It follows that for a small but nonzero constant q the element
qκ0 ∈ K satisfies the spectral conditions described below equation (4.7). This implies that
Ǩ ⊂ K is a nonempty open domain for any even d, and (4.7) provides us with new dynamical
r-matrices in this case.

We note that for d = 2 (4.10) defines the central extension of e(2) that has interesting
physical applications. In this case K is a two-dimensional Abelian Lie algebra. Further
examples for which K is two dimensional and Abelian can be obtained by taking A to be the
oscillator Lie algebra generated by ai , a

†
i (i = 1, . . . , n), the central element ĉ and the number

operator N̂ . With respect to the usual scalar product [16], K = span{N̂, ĉ} is a self-dual
subalgebra and Ǩ is easily seen to be nonempty. In these cases, it should not be too difficult
to quantize the above-constructed dynamical r-matrices.

5. Generalizations to affine Lie algebras

In this section we describe generalizations of the r-matrices that appear in (4.7) for situations in
which the dynamical variable lies in a finite-dimensional subalgebra of an infinite-dimensional
Lie algebra A. In fact, we shall take A to be an ‘affine Lie algebra’ obtained by central extension
and inclusion of the derivation from a twisted loop algebra built on a finite-dimensional self-
dual Lie algebra G, and let the dynamical variable lie in the grade zero part of A.

We start with a preliminary remark that will be used below. Let A be a (possibly infinite-
dimensional) self-dual Lie algebra with scalar product 〈 , 〉. Consider a decomposition

A = K + K⊥ K ∩ K⊥ = {0} (5.1)

where K ⊂ A is a finite-dimensional self-dual Lie subalgebra. Let us now denote by
R : Ǩ → End(A) the operator-valued function corresponding to a function3 r : Ǩ → A ⊗ A,
where Ǩ is some open subset of K. By assuming the existence of the directional derivative

(∇T R)(κ) := d

dt
R(κ + tT )|t=0 ∀T ∈ K κ ∈ Ǩ (5.2)

let us define

〈X, (∇R)(κ)Y 〉 :=
∑
i

Ki〈X, (∇Ki
R)(κ)Y 〉 ∀X, Y ∈ A (5.3)

where {Ki} and {Ki} are dual bases of K, 〈Ki,K
j 〉 = δ

j

i . Denote by f̂ ∈ A ⊗ A ⊗ A the
(antisymmetric) invariant element associated with the Lie bracket of A, and Î ∈ A ⊗ A the
(symmetric) invariant element associated with the unit operator on A. (If Tα and T α are dual
bases of A and [Tα, Tβ] = f

γ

αβTγ , then f̂ = f
γ

αβT
α ⊗ T β ⊗ Tγ and Î = Tα ⊗ T α .) We have

the following lemma.

Lemma. Let us consider an antisymmetric r-matrix r : Ǩ → A ∧ A and the associated
operator R : Ǩ → End(A). Then the equation

CDYB(r) = −C2f̂ (5.4)

where C is some complex constant, is equivalent to

[RX,RY ] − R([X,RY ] + [RX, Y ]) + 〈X, (∇R)Y 〉 + (∇YKR)X − (∇XKR)Y

= − C2[X, Y ] ∀X, Y ∈ A. (5.5)

3 If A is infinite dimensional, then A⊗A denotes a certain completion of the algebraic tensor product, which is such
that the corresponding linear operators are well defined on A.
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The statement of the lemma is straightforward to verify. Note that in (5.5) we use the
decomposition X = XK + XK⊥ with XK ∈ K, XK⊥ ∈ K⊥ and similarly for Y . The variable
κ ∈ Ǩ had been omitted for brevity; RX stands for the action of R(κ) on X ∈ A and so on. It
is often more convenient to verify (5.5) case by case for the different choices of X and Y , than
to inspect all components of the threefold tensor product in (5.4). It is well known that (5.4)
is also equivalent to CDYB(r ± CÎ) = 0.

Let now G be a finite-dimensional complex, self-dual Lie algebra with the invariant ‘scalar
product’ denoted asB(ξ, η) for any ξ, η ∈ G. Let us suppose thatµ is an automorphism of G of
order N ∈ N, µN = id, that has nonzero fixed points and satisfies B(µ(ξ), µ(η)) = B(ξ, η).
(The last two properties of µ are automatic if µ = id or G is simple, which are included as
special cases.) Then G can be decomposed as a direct sum of the eigensubspaces of µ as

G = ⊕a∈EµGa Eµ ⊂ {0, 1, . . . , (N − 1) } (5.6)

Ga :=
{
ξ ∈ G |µ(ξ) = exp

(
ia2π

N

)
ξ

}
�= {0}. (5.7)

Note that Ga is perpendicular to Gb with respect to the bilinear form B unless a + b = N or
a = b = 0, which implies that if a nonzero a belongs to the index set Eµ then so does (N −a),
and G0 �= {0} is a self-dual subalgebra of G. The twisted loop algebra ?(G, µ) is by definition
the subalgebra of G ⊗ C[λ, λ−1] generated by elements of the form

ξna := ξ ⊗ λna with ξ ∈ Ga na = a + maN ma ∈ Z. (5.8)

The ‘affine Lie algebra’ A(G, µ) is given by

A(G, µ) := ?(G, µ) ⊕ Cd ⊕ Cĉ (5.9)

with the Lie bracket of its generators defined as

[ξna , ηpb ] = [ξ, η]na+pb + naδna,−pb
B(ξ, η)ĉ ∀ξ ∈ Ga η ∈ Gb (5.10)

[d, ξna ] = naξ
na [ĉ, d] = [ĉ, ξ na ] = 0. (5.11)

A nondegenerate scalar product 〈 , 〉 can be defined on A(G, µ) by setting

〈ξna , ηpb〉 = δna,−pb
B(ξ, η) 〈ĉ, d〉 = 1 〈d, ξna 〉 = 〈ĉ, ξ na 〉 = 0. (5.12)

Notice that A(G, µ) is graded by the eigenvalues of ad d,

A(G, µ) = ⊕n∈(Eµ+NZ)A(G, µ)n (5.13)

whereby we obtain a decomposition of the type (5.1) with

K := A(G, µ)0 = G0 ⊕ Cd ⊕ Cĉ K⊥ = ⊕n∈(Eµ+NZ)\{0}A(G, µ)n.
(5.14)

We regard G0 as a subspace of A(G, µ) by identifying ξ ∈ G0 with ξ ⊗λ0 ∈ A(G, µ); and now
we set A := A(G, µ) for brevity.

To describe the dynamical r-matrix of our interest, R : Ǩ → End(A), we parametrize the
general element κ ∈ K = A0 as

κ = ω + kd + lĉ ω ∈ G0 k, l ∈ C. (5.15)

Let f and F be the following complex analytic functions:

f : z �→ 1

2
coth

z

2
− 1

z
F : z �→ 1

2
coth

z

2
. (5.16)

By definition, R(κ) (κ ∈ Ǩ) is given by the collection of the finite-dimensional linear operators

R(κ)|A0 := f ((ad κ)0) R(κ)|An
:= F((ad κ)n) ∀n ∈ (Eµ + NZ) \ {0} (5.17)
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where (ad κ)n := ad κ|An
∀n ∈ (Eµ + NZ). These finite-dimensional operators are given

analogously to (4.5). Therefore, for them to be well defined, the spectrum of ad κ on An

must not contain any pole of the respective functions f (for n = 0) and F (for n �= 0). This
condition could be spelled out explicitly by using that for ξ ∈ Ga and na = (a + mN) with
m ∈ Z (ad κ)ξna = ((kna + ad ω)ξ)na . This relation translates the condition on the spectrum
of ad κ into a condition on the spectrum of ad ω on the Ga . It is not difficult to see from this
that R : Ǩ → End(A) is indeed well defined on a domain of the form

Ǩ = { κ = ω + kd + lĉ | l ∈ C, k ∈ (C \ Ri), ω ∈ Bk} (5.18)

where Bk ⊂ G0 is an open subset depending on k for which the above conditions hold (for a
more explicit description, see [14]). The corresponding map r : Ǩ → A⊗A is antisymmetric
and is K-equivariant. Its interest is due to the following statement.

Proposition 2. The dynamical r-matrix R : Ǩ → End(A) defined by equations (5.17)
with (5.16) on a domain of the form in (5.18) satisfies the operator version (5.5) of the CDYBE
with C = 1

2 .

The verification of the proposition is not difficult, but it is rather long. It is presented
in [14]. As an equivalent statement, it follows that the r-matrices r± : Ǩ → A ⊗ A that are
associated with the operators R± := R ± 1

2I satisfy the CDYBE (1.1). Formally, these r-
matrices can be thought of as special cases of (4.8). Our point is that they are well defined in the
infinite-dimensional situation considered here. It may also be checked that these r-matrices are
K-equivariant, the condition in terms ofR being (∇[T ,κ]R)(κ) = [ad T ,R(κ)], ∀T ∈ K, κ ∈ Ǩ.

We finish by a remark on a reinterpretation of the above A ⊗ A-valued r-matrices as
spectral-parameter-dependent r-matrices. It is well known that spectral-parameter-dependent
G ⊗ G-valued r-matrices may be obtained by applying evaluation homomorphisms to
?(G, µ) ⊗ ?(G, µ)-valued r-matrices. In the context of dynamical r-matrices, Etingof and
Varchenko [5] used this method to recover Felder’s elliptic dynamical r-matrices [4] from the
standard trigonometric dynamical r-matrices of the affine Lie algebras based on the complex
simple Lie algebras. In fact, the same procedure can be applied to the more general family
of dynamical r-matrices given by proposition 2. The first step is to set ĉ to zero and fix
the value of k. Thereby r±(κ) ∈ A ⊗ A become ?(G, µ) ⊗ ?(G, µ)-valued dynamical r-
matrices, rk,± : Bk → ?(G, µ) ⊗ ?(G, µ), which depend parametrically on k. By using the
standard evaluation homomorphisms along the lines of [5], rk,± are then converted into G ⊗G-
valued spectral-parameter-dependent dynamical r-matrices, rk,±(ω, z). The final result can
be described as follows. Introduce the functions χa(w, z|τ) of the complex variables w, z by

χa(w, z|τ) := exp

(
2π iaz

N

) (
1

2π i

θ1(
w

2π i + a
N
τ + z|τ)θ ′

1(0|τ)
θ1(z|τ)θ1(

w
2π i + a

N
τ |τ) − δa,0

w

)
(5.19)

where θ1 is the standard theta-function4, and let Tα , T β denote dual bases of G. In fact, one
obtains the r-matrix rk,+(ω, z) = B(Tα,R(ω, z|τ)Tβ)T α ⊗ T β where R(ω, z|τ) ∈ End(G) is
defined by

R(ω, z|τ)|Ga
:= χa(ad ω, z|τ) on Ga ∀a ∈ Eµ ω ∈ Bk ⊂ G0. (5.20)

The relation between the parameters k and τ reads as τ := kN
2π i , where we assumed that

�(k) < 0. The derivation of this formula is contained in [14]. If G is a simple Lie algebra
and µ is an inner automorphism corresponding to a Coxeter element in the Weyl group, then
the spectral-parameter-dependent r-matrices given by (5.20) are equivalent to Felder’s elliptic
dynamical r-matrices, as expected upon comparison with section 4.6 in [5]. In the general
case, the r-matrices provided by (5.17) and (5.20) appear to be new.

4 We have θ1(z|τ) = ϑ1(πz|τ) with ϑ1 in [17].
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6. Discussion

In this paper we have pointed out that solutions of the CDYBE can be mapped to other solutions
by Dirac reductions of their underlying Poisson–Lie groupoids, if the conditions given in (3.1)
and (3.9) are satisfied. Among the possible applications of proposition 1, we mentioned the
antisymmetric solutions that are obtained as reductions of the zero r-matrix5, and the class
of r-matrices given by (4.7) that are reductions of the canonical r-matrix (4.4). Many of
these r-matrices are already known, but the class defined by (4.7) contains new examples,
too. Although our construction works rigorously only in the finite-dimensional case, some
interesting r-matrices that result from it turned out to be well defined in certain infinite-
dimensional situations as well. In particular, we exhibited a family of dynamical r-matrices
on affine Lie algebras based on arbitrary finite-dimensional self-dual Lie algebras. The r-
matrices provided by proposition 2 are in the general case new, and this family includes as
special cases those trigonometric r-matrices of [5] that become Felder’s elliptic dynamical
r-matrices [4] upon evaluation homomorphisms.

The ‘canonical’ r-matrices (4.4) appear in the description of the chiral sectors of the
classical WZNW model in association with any finite-dimensional self-dual Lie algebra [8].
Some of their reductions to self-dual subalgebras have been considered in this context in [19].
We also wish to mention the paper [20], where the effect of a Dirac reduction of the chiral
WZNW phase space on constant exchange r-matrices has been studied. The derivation of the
trigonometric r-matrix (4.9) contained in this paper served as one of our original motivations,
but its status in terms of the geometric interpretation of the dynamical r-matrices is still to
be understood. Another open question is whether the general family of r-matrices given
by proposition 2 can be used to encode the Poisson brackets of generalized versions of the
WZNW model. As candidates, we have in mind both the WZNW models formally obtained by
replacing the finite-dimensional WZNW group with an extended affine Lie group [21], which
is useful in the theory of soliton equations [22], and the intriguing quasitriangular WZNW
model recently introduced by Klimcik [23]. Felder’s r-matrices are already known to play this
role in these models.

Somewhat implicitly (as a special case of theorem 3.14), the canonical r-matrices (4.4)
first appeared in [5]. In their explicit form, they were found independently in the papers [7,8].
More precisely, in [5,7] the assumption that the underlying Lie algebra is reductive was used,
while [8] provides an indirect approach to these r-matrices on any self-dual Lie algebra. A
direct proof of the statement that (4.4) satisfies the CDYBE for any finite -dimensional self-
dual Lie algebra is given in [14]. For a different proof in a generalized case, see [13]. The
relationship between the generalizations of the r-matrices (4.4) constructed in [13] and the
r-matrices given by our proposition 2 is explained in [14].

It would be interesting to develop the quantization of the r-matrices defined by (4.4).
If that was found, one could in principle obtain the quantizations of the reduced r-matrices
in (4.7) by means of appropriate quantum Hamiltonian reductions. We also wish to clarify
whether the canonical r-matrices make sense in cases for which the dynamical variable λ

lies in a ‘suitable’ infinite-dimensional self-dual Lie algebra A. Formula (4.5) itself is well
defined [15] if A is a Banach space and ad λ is a bounded operator on it.

We hope to be able to return to the above questions in the future.

5 Note added: we learned after submitting this paper that these dynamical r-matrices, given by D in proposition 1,
have also been found recently in [18] by using a different method.
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